Category Archives: GIS

Waggawaggawaggawagga animated ducks in QGIS

I used ne_110m_admin_0_countries.

Rendering updates for the layer at 0.1 seconds.

Geometry Generator for a Point for the marker location via line_interpolate_point:

  geometry_n(order_parts($geometry, 'area($geometry)', ascending:=False), 1),

Raster Image Marker with, vertical anchor at bottom, sprite choice between walking and running (doesn’t actually work) plus the frame via

  geometry_n(order_parts($geometry, 'area($geometry)', ascending:=False), 1),
  || if(perimeter(@biggest_geom) < 10, 'Walking', 'Running')
  || ' 00'
  || to_string(round(epoch(now())/200)%2+1)
  || '.png'

Rotation did not work, I tried line_interpolate_angle:

  geometry_n(order_parts($geometry, 'area($geometry)', ascending:=False), 1),

Steps via two more Geometry Generators, both for Lines using line_substring and some nice style (inspired by the wonderful built-in cat trail preset):

	geometry_n(order_parts($geometry, 'area($geometry)', ascending:=False), 1),

Could be improved if (for example) Raster Image Marker would support:

  • Choice of resampling algorithm
  • Flipping
  • Rotation would work, no idea what’s wrong with my expression, it works with random values, so …
  • Whatever is broken with the choice between ‘Walking’ and ‘Running’ in the file path expression

The effect of lossy LERC compression, visually “explained”

LERC is a kick-ass approach to 2D raster data compression, supported in GDAL since version 3.3. You can use it for lossless compression but it is also able to throw away some bits of information for smaller data sizes. You tell it which level of Z error is acceptable for your values and it will use that freedom to change the values of neighboring cells to do its magic. Z means the “data” axis here, of a single-band in a 2D raster, X and Y are the coordinates, or rather the locations of the data values in the raster, which are obviously not changed.

I thought it would be nice to show what it actually results in, you can read up on the details elsewhere if you want. Look at the images in full resolution please.

I used a global SRTM DEM with a Z value in full meters (no floating point values but integers) and applied LERC on it in three ways: Lossless, with a maximum Z error of 1 meter and a maximum Z error of 10 meters. Zstandard compression was always used.

The original GeoTIFF file was already very well compressed with Zstandard level 15 and a horizontal predictor; at ~1296000 x ~417600 pixels it has a size of 86 gigabytes including overviews.

  • Original (ZSTD level 15): 86 GB
  • LERC_ZSTD (lossless): 105G
  • LERC_ZSTD (maximum Z error of 1): 81G
  • LERC_ZSTD (maximum Z error of 10): 21G

Cool, so if we don’t care about an error of 10 meters, we can have a global DEM (well, as global as SRTM is with its 60° cut-off) at ~30 meters pixel resolution in 21 gigabytes. But what does that actually look like then and how will this error appear? Well, check it out:

Here are some samples visualised with a greyscale color ramp (locally adjusted, so the lowest value in the image is black, the highest value is white). They are shown at a 1:1 resolution, one pixel in the image (if you look at it at 100%) is one cell of the DEM data. The left image is lossless, the middle one was allowed an Z error of 1 meter, the right one 10 meters.

Mountainous, here the values range from 0 meters to about 2000 meters:

You can hardly see a difference, at least visually.

“Mediumish”, values between ~100 and ~500 meters:

At the 10 meter error level you can see a significant terracing effect.

Plains, values all around 100 meters:

You can see some structures collapsing into flat areas in the 1 meter version and oh wow that 10 meters version looks like upscaled pixels.

Time to zoom in! I picked a less flat area again because it makes it easier to understand. Here the values are between ~100 and ~300 meters:

So what do we see here? Neighboring cells with the same values compress better so LERC is shifting the values around (within the allowed error), creating terraces of same-valued cells. If you look closely you can see that there is also a visible pattern of squarish structures. Those are the blocks or windows in which LERC looks at the data and does its adjustments, in this case they were 8×8 pixels wide. Note: What LERC does exactly is a bit more complex than “try to make neighboring values the same”, it actually looks at the bits required to store the values within a block and optimized that within the error tolerance.

And now you know what LERC can do, if you give it a error level to play with.

For reference, here is that same-ish area with the error tolerance at 1 meter:

You have to zoom in quite a bit more to be able to see the effects here due to the nature of the data in this extent in combination with the particular error tolerance:

The larger the zonal differences of your Z values are to each other and in relation to the error tolerance, the less distinguished will this effect be. If there are steps of 100 meters between neighboring pixels, an extra error of 10 meters won’t do much of a difference. But in more flat areas it will have significant “terracing” effects as you could see above. This is similar to “banding” effects in images where there is little variation in color, e. g. a blue sky or an artificial color gradient, and you look at it in a setup that has a color bit depth on a resolution your human eyes can distinguish.

So if you want to use LERC with a lossy approach, think hard about what is going to happen with your data later. What kind of analysis will be performed, how will it be “looked” at, what will be calculated. Do it smart and you can have a predictable/controllable lossy compression with seriously small file sizes, do it without thinking and your data will lead to misinterpretation and apocalypse.

Digitales Oberflächenmodell von Hamburg

Ach nee, der LGV hat ein bildbasiertes DOM von Hamburg im Transparenzportal veröffentlicht… Und sogar gleich zwei, eins von 2018, eins von 2020. Die Rasterweite ist 1 Meter, ob das wohl so vorlag oder für die Veröffentlichung gefiltert wurde?

Egal. Das ist ja großartig! Da werden eine Menge von Anwendungen ermöglicht (Sichtachsen! Verschattungen! Vermaschung! VR! AR!) und verschiedenste Akteure werden die Daten absolut feiern. Auch wenn es mit 1 Meter Auflösung wirklich mies grob ist, auf ein 1 Meter Gitter gerastert ist (nicht ausgedünnt, d. h. es ist teilweise stärker verfälscht und “daneben”) und “nur” bildbasiert (nicht gescannt) ist, geht da schon einiges mit.

Ausprobieren! Im Browser!

Achtung, frickelige Bedienung! Am besten den WASD-Möwen-Modus nutzen, mit Speed 1000. Oder mit einem Doppelklick irgendwo hinzoomen.

Datenaufbereitung als LAZ

Für 2018 liegen die Daten als 12768 einzelne XYZ-Kacheln vor, also als super ineffiziente Textdateien. Insgesamt sind es rund 22 Gigabyte. Für 2020 sind es stattdessen 827 größere Kacheln, aber ebenfalls in XYZ mit einem ähnlichem Platzbedarf.

Schönerweise gibt es freie Tools wie txt2las, was sie schnell und einfach ins super effiziente LAZ-Format umwandeln kann:

txt2las -i DOM1_XYZ_HH_2018_04_30/*.xyz -epsg 25832 -odir /tmp/laz/ -olaz

Hat bei mir ungefähr 5 Minuten gebraucht und da waren es nur noch 700 Megabyte. Das ZIP war übrigens mehr als 3 Gigabyte groß.

Zusammengefasst werden können die einzelnen Dateien mit lasmerge:

lasmerge -i /tmp/laz/*.laz -olaz -o DOM1_XYZ_HH_2018_04_30.laz

Interaktive 3D-Webanwendung

Dann noch schnell in den großartigen PotreeConverter von Markus Schütz geschmissen mit

PotreeConverter DOM1_XYZ_HH_2018_04_30.laz -o web/ --encoding BROTLI \
  --generate-page DOM1_XYZ_HH_2018_04_30 --title DOM1_XYZ_HH_2018_04_30

und 4 Minuten später ist die interaktive 3D-Webanwendung fertig (siehe unten), wegen der zusätzlichen Octree-Struktur jetzt bei rund 3 Gigabyte.

Punktwolke mit Farben aus Orthophoto einfärben

Die bereitgestellten Oberflächenmodelle sind so schlicht wie es nur geht, es sind reine XYZ-Daten ohne weitere Dimensionen wie Farbe o. ä.

Glücklicherweise gibt es ja auch die Orthophotos, eventuell wurde sogar dasselbe Bildmaterial genutzt? Da müsste mal jemand durch den Datenwust wühlen, die bei den DOPs werden die relevanten Metadaten nicht mitgeliefert…

Theoretisch könnte man sie also einfärben. Leider ist lascolor proprietär und kommt mit gruseligen, bösartigen Optionen, wenn man es wagt es “unlizenziert” zu nutzen (“Please note that the unlicensed version will (…) slightly change the LAS point order, and randomly add a tiny bit of white noise to the points coordinates once you exceed a certain number of points in the input file.”) und kann JPEG in GeoTIFF nicht lesen (so hab ich mir die DOPs aufbereitet). Eine Alternative ist das geniale PDAL. Mit einer Pipeline wie

    "pipeline": [
            "type": "filters.colorization",
            "raster": "DOP20_HH_fruehjahrsbefliegung_2020.tif"
            "type": "writers.las",
            "compression": "true",
            "minor_version": "2",
            "dataformat_id": "3",


pdal pipeline DOM1_XYZ_HH_2020_04_30.laz+DOP20_HH_fruehjahrsbefliegung_2020_90.cog.tif.json

ist die Punktwolke innerhalb von Minuten coloriert und kann dann wie gehabt mit PotreeConverter in einen interaktiven 3D-Viewer gesteckt werden.

Das Ergebnis ist besser als erwartet, da es scheinbar tatsächlich die selben Bilddaten sind (für beide Jahre). Andererseits ist es auch nicht wirklich schick, da die DOPs nicht als True Orthophoto vorliegen und damit höhere Gebäude gekippt in den Bilder abgebildet sind. Sieht man hier schön am Planetarium.


Wer es lieber als GeoTIFF haben möchte, hat es etwas schwerer, denn GDAL kommt mit dieser Art von Kacheln (mit Lücken und in der bereitgestellten Sortierung) nicht gut klar. Mein Goto-Tool dafür ist GMT.

gmt xyz2grd $(gmt gmtinfo -I- *.xyz) -Vl -I1 -G/tmp/gmt.tif=gd:GTiff *.xyz

Das so erstellte GeoTIFF kann anschließend mit GDAL optimiert werden (ab GDAL 3.2.3/3.3):

gdal_translate -of COG -co COMPRESS=DEFLATE -co PREDICTOR=2 \
  --config GDAL_NUM_THREADS ALL_CPUS --config GDAL_CACHEMAX 50%  \
  -a_srs EPSG:25832 /tmp/gmt.tif DOM1_XYZ_HH_2020_04_30.tif

Hier mal im Vergleich mit dem DGM1 als Schummerungen:

Vermaschung als 3D-Modell

Leider habe ich keine gute Lösung für die 3D-Vermaschung gefunden. tin-terrain und dem2mesh kommen nicht mit so großen Datenmengen auf einmal klar und weiter hab ich nicht geschaut. Wer da was gutes weiß kann sich bei mir bei nächster Gelegenheit Kekse oder Bier abholen. ;)

Daten hinter den Bildern und den Viewern
Datenlizenz Deutschland Namensnennung 2.0, Freie und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV)

Von wo wurde der Hamburger Fernsehturm fotografiert

Vom großartigen @Fernsehturm_HH-Account inspiriert hab ich mal ein 4 Jahre altes Projektchen aufgewärmt: Verortete Fotos auf Flickr, die mit “Hamburg” und “Fernsehturm” getaggt sind. Alternativ als Linien vom (angeblichen) Aufnahmeort zum Turm.


Ungefiltert und voller Mist, aber man kann z. B. toll sehen, wie einladend die Brückem vorm Kuhmühlenteich für Fotos sind.

Kostenlose Internetpunkteabsahnidee: Dasselbe mit dem Eiffelturm, dem Londoner Dildo u. ä. machen, Konkave Hülle außen drum, schick aufbereiten, als “Nur wo man $Wahrzeichen sieht, ist $Stadt” vermarkten, €€€€.

Interaktive Karte der Baugenehmigungen in Hamburg

Ich habe endlich mal ein über mehrere Jahre gereiftes (eher gealtertes und verfrickeltes) Projekt in einen einigermaßen vorzeigbaren Zustand gebracht: Eine interaktive Karte der Baugenehmigungen in Hamburg.

Je weniger transparent eine Fläche dargestellt ist, desto mehr Dokumente sind mit ihr verknüpft (ja, es ist ein Feature je Dokument D;). Eigentlich war die Seite anders aufgebaut, mit einem PDF-Viewer auf der rechten Seite. Aber da kein HTTPS kann (seid ihr auch so gespannt auf die UMTS-Auktion nächste Woche?), geht das aus Sicherheitsgründen nicht ohne ein Spiegeln der Daten oder einen Proxy.

Die Daten kommen größtenteils aus dem Transparenzportal. Für das Matching der angebenen Flurstücks-“IDs” zu den tatsächlichen Flurstücken war aber ein erheblicher Aufwand nötig. Das Drama ging bis hin zum Parsen aus PDFs, die mal so, mal so formatiert waren und natürlich auch voller Eingabefehler auf Behördenseite. Vielleicht schreibe ich da noch beizeiten mal einen Rant. TL;DR: Ohne die zugehörige Gemarkung ist mit einer Flurstücks-“ID” wie in den Daten angegeben keine räumliche Zuordnung möglich. In den veröffentlichten Daten stecken nur die Nenner der Flurstücksnummern, nicht aber die Gemarkungsnummern. Ziemlich absurd.

Das ganze ist nur ein Prototyp, vermutlich voller Fehler und fehlender Daten. Aber interessant und spaßig ist es, viel Freude also!

Es wäre noch eine MENGE zu tun, um das ganze rund zu machen. Falls du Lust hast, melde dich gerne. Es geht vom wilden Parsen, über Sonderregeln für kaputte Dokumente, zu Kartenstyling bis zur UI. Schön wäre es auch alles in einer anständigen Datenbank zu halten und nicht nur nach der räumlichen Dimension durchsuchen zu können.

Highlight current timeslice in a QGIS Atlas layout

Did this for an ex-colleague some months ago and forgot to share the how-to publically. We needed a visual representation of the current time in a layout that showed both a raster map (different layer per timeslice) and a timeseries plot of an aspect of the data (this was created outside QGIS).

Have lots of raster layers you want to iterate through. I have:


Create a new layer for your map extent. Draw your extent as geometry. Duplicate that geometry as many times as you have days. Alternatively you could of course have different geometries per day. Whatever you do, you need a layer with one feature per timeslice for the Atlas to iterate though. I have 30 days to visualise so I duplicated my extent 30 times.

Open the Field Calculator. Add a new field called date as string type (not as date type until some bug is fixed (sorry, did not make a note here, maybe sorting is/was broken?)) with an expression that represents time and orders chronologically if sorted by QGIS. For example: '2019-01-' || lpad(@row_number,2,0) (assuming your records are in the correct order if you have different geometries…)

Have your raster layers named the same way as the date attribute values.

Make a new layout.

For your Layout map check “Lock layers” and use date as expression for the “Lock layers” override. This will now select the appropriate raster layer, based on the attribute value <-> layer name, to display for each Atlas page.

Cool, if you preview the Atlas now you got a nice animation through your raster layers. Let’s do part 2:

In your layout add your timeseries graph. Give it a unique ID, e. g. “plot box”. Set its width and height via new variables (until you can get those via an expression this is needed for calculations below).

Create a box to visualise the timeslice. Set its width to map_get(item_variables('plot box'), 'plot_width') / @atlas_totalfeatures. For the height and y use/adjust this expression: map_get(item_variables('plot box'), 'plot_height'). For x comes the magic:

-- number of days in timespan
-- +1 because we need the number of days in total
-- not the inbetween, day() to just get the number of days
map_get(item_variables('plot box'), 'plot_width') / @days_total,
day(to_date(attribute(@atlas_feature, 'date'))-to_date(minimum("date"))),
-- number of days the current feature is from the first day
-- to_date because BUG attribute() returns datetime for date field
@mm_per_day * @days + map_get(item_variables('plot box'), 'plot_x')

This will move the box along the x axis accordingly.

Have fun!

How to get a dataset out of OpenStreetMap (OSM) and into QGIS easily

For small datasets just use the QuickOSM plugin, enter your key=value and it will load the data directly as QGIS layer(s).

For big datasets don’t run massive queries on the Overpass API but use prepared thematic or regional OpenStreetMap extracts.

For example, if you want all things tagged place=town globally, grab from and run a filter on that locally.

Don’t be scared of processing a global OSM planet file either, Osmium makes filtering OSM data extremely easy:

osmium tags-filter in.osm.pbf n/place=town -o place=town.osm.pbf

Yes, a planet file is pretty big, but extracting specific features from that is not a big data problem and you must not be scared of it. Downloading the file will probably take you magnitudes longer than extracting something from it. For me it was 45 minutes for the download, then about 8 minutes for extracting on a seriously slow (~60MB/s) spinning metal hard disk drive (no SSD).

And yes, you can load OSM PBF directly into QGIS thanks to GDAL’s support for the format.

While we are at it: Don’t use GeoJSON for anything but data transfer and maybe storage. It is not an efficient format to power your layers and GIS analyses. (OSM PDF isn’t either.)